首页> 外文OA文献 >Retrieval dynamics of neural networks for sparsely coded sequential patterns
【2h】

Retrieval dynamics of neural networks for sparsely coded sequential patterns

机译:稀疏编码序列的神经网络检索动力学   模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well known that a sparsely coded network in which the activity level isextremely low has intriguing equilibrium properties. In the present work, westudy the dynamical properties of a neural network designed to store sparselycoded sequential patterns rather than static ones. Applying the theory ofstatistical neurodynamics, we derive the dynamical equations governing theretrieval process which are described by some macroscopic order parameters suchas the overlap. It is found that our theory provides good predictions for thestorage capacity and the basin of attraction obtained through numericalsimulations. The results indicate that the nature of the basin of attractiondepends on the methods of activity control employed. Furthermore, it is foundthat robustness against random synaptic dilution slightly deteriorates with thedegree of sparseness.
机译:众所周知,活动水平极低的稀疏编码网络具有令人着迷的平衡特性。在当前的工作中,研究了一种神经网络的动态特性,该神经网络旨在存储稀疏编码的顺序模式而不是静态模式。应用统计神经动力学理论,我们推导了控制搜索过程的动力学方程,这些方程由一些宏观顺序参数(如重叠)描述。发现我们的理论为通过数值模拟获得的存储容量和吸引盆地提供了良好的预测。结果表明,吸引盆地的性质取决于所采用的活动控制方法。此外,发现针对随机突触稀释的鲁棒性随着稀疏程度而稍微劣化。

著录项

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号